
GAIA - Multidisciplinary Academic Journal – ISSN 3079-6946 
From Gaia College Academy of Applied Sciences & Technology 
GAIA 1(1 – the Educational Spectrum) 

  

 

Shwartz, H & Fuchs, A. (2025). The Cognitive Distinctions between Mathematical Problem-solving 
and Problem-posing Processes. Gaia, 1(1 – the Educational Spectrum), 37 - 50 

 
 

 The Cognitive Distinctions between Mathematical 
Problem-solving and Problem-posing Processes 

 

 
Hagar Swartz 
Ariel Fuchs 

Gaia College – Academy of Applied Science & Technology, Israel 
 

Abstract:  

This meta-analysis explores the cognitive distinctions between mathematical problem-solving and 
problem-posing processes. While problem-solving primarily engages visuospatial working memory, fact 
retrieval, and procedural execution centered in the left inferior frontal gyrus, problem-posing activates 
distinct neural pathways involving metacognition, conceptual integration, and dorsolateral prefrontal 
networks. Our synthesis of neuroimaging, behavioral, and educational research reveals that these 
complementary processes influence cognitive arousal, self-efficacy, and motivation in mathematics 
education through different mechanisms. Problem-solving effectiveness correlates with spatial working 
memory capacity and cognitive flexibility, while successful problem-posing depends on metacognitive 
monitoring and language processing abilities. These findings suggest that pedagogical approaches should 
intentionally develop both skill sets through targeted cognitive training that addresses working memory 
constraints while fostering reflective thinking. Educational implications include the importance of 
integrating question-creation activities alongside traditional problem-solving to optimize mathematical 
reasoning abilities and enhance student engagement. 
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Introduction 
The cognitive architecture underlying mathematical reasoning involves distinct yet interrelated 

neural and psychological processes depending on task demands. While extensive research has 
focused on mechanisms supporting problem solving, recent studies reveal that problem posing—the 
creation of novel mathematical questions—engages qualitatively different cognitive operations. This 
report synthesizes evidence from neuroimaging, behavioral experiments, and educational research 
to contrast the cognitive mechanisms activated during mathematical problem solving versus problem 
posing. Key findings indicate that problem solving prioritizes working memory-dependent retrieval 
and automated fact access, whereas problem posing relies on hierarchical goal setting, conceptual 
integration, and metacognitive monitoring. Neurocognitive divergences emerge in prefrontal cortex 
engagement patterns: solving tasks activate left inferior frontal gyrus (IFG) regions associated with 
arithmetic fact retrieval (Suárez-Pellicioni, Demir-Lira & Booth, 2021), while posing tasks recruit 
dorsolateral prefrontal networks governing abstract reasoning and task design. Educational 
implications highlight the need for pedagogical strategies that separately cultivate solving efficiency 
and posing creativity through targeted cognitive training (Zhang, Song, Wu, & Cai, 2023). Recent 
studies have revealed the intricate nature of this relationship, demonstrating that parental stimulation, 
including a supportive home environment and positive interactions, is crucial for optimal cognitive 
growth (Zain & Iswinarti, 2024). The relationship appears to be bidirectional, as cognitive stimulation 
by parents at age 2 predicts reading ability at age 4, while children's cognitive ability also influences 
subsequent parenting quality (Tucker-Drob & Harden, 2012). This transactional process suggests a 
more complex developmental dynamic than previously understood. 

 
Research Questions 

What cognitive mechanisms operate when a person solves a mathematical question vs. the active 
cognitive mechanisms when writing a mathematical question? 

 
Literature Review 

Foundational Cognitive Processes in Mathematical Reasoning 

Mathematical cognition operates through dynamic interactions between core number 
representation systems, memory networks, and executive control mechanisms. The triple-code 
theory posits three neuroanatomical circuits: a verbal system for arithmetic facts (left perisylvian 
areas), a quantitative magnitude system (bilateral intraparietal sulci), and a visuospatial system for 
complex calculation (right parietal regions. These systems interface with prefrontal cortical regions 
responsible for working memory, cognitive flexibility, and goal maintenance—functions critical for 
solving and posing tasks but utilized differently across contexts, demonstrating the adaptability of 
cognitive functions in mathematical reasoning (Cai et al., 2023; Zhang, Song, Wu, & Cai, 2023). 
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The cognitive mechanisms underlying mathematical problem-solving 

Working memory capacity differentially constrains solving versus posing performance. During 
problem solving, spatial working memory facilitates retention of intermediate calculation steps and 
visual-spatial number representations (Cai et al., 2023). For example, maintaining place value during 
multi-digit subtraction requires continuous updating of spatial working memory buffers (Geary et al., 
2007) . In contrast, problem posing demands sustained activation of semantic memory networks to 
evaluate conceptual coherence and contextual appropriateness of candidate questions (Zhang, Song, 
Wu, & Cai, 2023). The Wisconsin Card Sorting Test reveals that solving open-ended problems 
requires reactive cognitive flexibility—the ability to shift problem-solving strategies based on 
feedback—while closed problems depend on procedural memory consolidation (Cai et al., 2023). 

Longitudinal fMRI data demonstrates that positive math attitudes enhance left IFG activation 
during fact retrieval, suggesting motivational factors modulate working memory efficiency in solving 
tasks (Krueger et al., 2008). This effect operates through increased cognitive effort expenditure: 
students with growth mindsets persist longer in retrieving partially encoded facts rather than 
defaulting to compensatory counting strategies. Recent studies have illuminated the neurocognitive 
mechanisms underlying the relationship between math attitudes, achievement, and brain activation. 
Positive math attitudes are associated with increased activation in the left inferior frontal gyrus (IFG) 
during arithmetic problem-solving, particularly for children with lower math skills (Demir-Lira et al., 
2019; Suárez-Pellicioni et al., 2021). This enhanced IFG activation reflects greater effort in fact 
retrieval and is linked to improved multiplication skills over time (Suárez-Pellicioni et al., 2021). 
Additionally, positive attitudes correlate with increased hippocampal engagement, supporting more 
efficient memory-based strategies (Chen et al., 2018). The left angular gyrus is specifically involved 
in arithmetic fact retrieval (Grabner et al., 2009), while temporal cortex activation explains 
improvements in math attitudes. Growth mindset fosters cognitive development through enhanced 
cortico-striatal dynamics. Longitudinally, motivation and learning strategies, rather than intelligence, 
predict growth in math achievement (Suárez-Pellicioni & Booth, 2022). 

The cognitive mechanisms underlying mathematical problem-solving reveal a complex interplay 
of mental processes, with working memory (WM) playing a central role. Research demonstrates that 
spatial working memory is crucial for numerical understanding and geometry (Silverman & 
Ashkenazi, 2022), with visuospatial WM specifically supporting spatial numerical representations 
and decomposition strategies. Studies have consistently shown that visuospatial working memory is 
essential for solving planning tasks, such as the Tower of London (Gilhooly et al., 2002) and the 
Tower of Hanoi (Cushen & Wiley, 2011), while also facilitating mental arithmetic, especially when 
employing counting strategies (Hubber, 2015). 

 

Neural network engagement during mathematical problem-solving activates a bilateral network 
encompassing prefrontal, parietal, and inferior temporal regions (Amalric & Dehaene, 2016). These 
neural patterns exhibit distinct characteristics during different phases of mathematical engagement, 
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including instruction, problem-solving, and example-based learning (Lee et al., 2015). The activation 
patterns suggest a sophisticated neural architecture that supports the execution of established 
mathematical skills and the acquisition of new competencies (Wintermute et al., 2012). 

Cognitive flexibility emerges as a critical mechanism, particularly in solving open-ended 
mathematical problems. This flexibility enables strategy adaptation and the generation of multiple 
solution pathways, influenced by cognitive style, creativity, and verbal ability (Bahar & Ozturk, 2018). 
Research indicates that traditional mathematical instruction may inadvertently constrain the 
development of this flexibility, as evidenced by college students' limited ability to generate multiple 
strategies (Shaw et al., 2022). 

The integration of different types of mathematical knowledge represents another crucial cognitive 
mechanism. The relationship between conceptual knowledge (understanding core concepts) and 
procedural knowledge (executing solution steps) appears to be iterative, with each form of knowledge 
potentially enhancing the other (Rittle-Johnson, 2004). Prior knowledge significantly affects problem 
encoding and solution processes (Crooks & Alibali, 2013), while mathematical symbols can prime 
specific procedural responses (Fayol & Thevenot, 2012). 

Cognitive load management varies based on task difficulty, prior knowledge, and interface 
familiarity (Oviatt et al., 2006). Research demonstrates that different instructional strategies are 
optimal at different stages of mathematical development, with worked examples proving more 
effective for novices while direct problem-solving becomes superior for advanced learners (Atkinson, 
Renkl, & Merrill, 2003). 

These findings have significant implications for mathematics education, particularly concerning 
learning disabilities. Studies consistently show that mathematics learning disabilities often manifest 
as impairments in spatial working memory and difficulties with visuospatial tasks (Passolunghi & 
Mammarella, 2012). Effective interventions, therefore, should incorporate spatial cognition training, 
visuospatial working memory exercises, and careful comparison of worked examples. 

The research synthesis suggests that successful mathematical problem-solving relies on the 
coordinated operation of multiple cognitive mechanisms, with spatial working memory and cognitive 
flexibility playing particularly crucial roles. This understanding indicates that effective mathematics 
education should develop both spatial cognition and cognitive flexibility while carefully managing 
cognitive load based on learner expertise. Future research might productively explore the optimal 
sequencing of different types of mathematical activities to maximize the development of these various 
cognitive mechanisms. 

The research on cognitive mechanisms in mathematical problem-solving and writing reveals a 
fascinating interplay between working memory, metacognition, and language processing. Working 
memory serves as a fundamental cognitive resource, with visuo-spatial working memory being 
particularly crucial for mathematical operations. Studies have demonstrated its essential role in 
planning tasks such as the Tower of London (Gilhooly et al., 2002) and the Tower of Hanoi (Cushen 
& Wiley, 2011), as well as in mental arithmetic and counting strategies (Hubber, 2015). 
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The relationship between working memory and mathematical ability is particularly evident in 
studies of learning disabilities, where children with mathematics learning disabilities consistently 
show impairments in spatial working memory tasks (Passolunghi & Mammarella, 2012). This 
connection extends to everyday problem-solving tasks, including spatial text processing and visual 
search activities (Travis, 2019), highlighting the pervasive role of working memory in mathematical 
cognition. 

Writing in mathematics emerges as a powerful tool for developing metacognitive skills and 
enhancing problem-solving abilities. Research by Pugalee (2001) and Kosko et al. (2014) 
demonstrates that writing promotes higher-order thinking by engaging students in reflection, 
anticipation of solution paths, and evaluation of question complexity. This process helps students 
organize and consolidate their mathematical thinking while developing their ability to communicate 
ideas coherently (Goldsby & Cozza, 2002). 

The development of algebraic reasoning and abstraction is particularly supported through writing 
activities (Kosko et al., 2014). Journal writing, as identified by Waywood (1992), serves as a valuable 
tool for concept formation in mathematics. This finding aligns with research showing that writing 
helps students make connections between abstract mathematical concepts and real-world contexts 
(Gainsburg, 2008). 

Language factors play a significant role in mathematics learning, as demonstrated by Aiken's (1972) 
research on the influence of reading ability and verbal skills. The use of questions in mathematical 
writing serves multiple instructional and conversational functions (Mackiewicz & Thompson, 2014), 
suggesting that developing question-writing skills can enhance both teaching and learning processes. 

Teachers can facilitate these cognitive processes by modeling thinking strategies, providing 
structured problem-solving opportunities, and helping students develop metacognitive awareness. 
The development of mathematical literacy question writing skills in preservice teachers has been 
shown to improve their awareness and instructional capabilities (Gartmann & Freiberg, 1995). 

This synthesis of research suggests that effective mathematics education should integrate writing 
activities that promote metacognition while considering the constraints and capabilities of working 
memory. The combination of writing tasks with appropriate cognitive support mechanisms may offer 
a powerful approach to developing mathematical understanding and problem-solving abilities. 

The findings indicate a need for further research into how different types of writing tasks might be 
optimized to support various aspects of mathematical learning while managing cognitive load. 
Additionally, investigating the relationship between working memory capacity and the effectiveness 
of different writing strategies could provide valuable insights for educational practice. 
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Findings 

The cognitive mechanisms involved in solving a mathematical question versus writing a 
mathematical question differ in several fundamental ways, particularly in terms of working memory 
utilization, metacognitive engagement, and neural network activation. 

 

Cognitive Mechanisms in Mathematical Problem-Solving 
When a person solves a mathematical problem, cognitive engagement primarily relies on working 

memory, particularly visuospatial working memory (WM), which supports numerical reasoning, spatial 
visualization, and procedural fluency (Silverman & Ashkenazi, 2022). Research shows that individuals 
performing mathematical operations engage bilateral prefrontal and parietal networks, essential for 
both arithmetic processing and logical reasoning (Amalric & Dehaene, 2016). 

Another key cognitive process in problem-solving is cognitive flexibility, which allows individuals 
to adapt strategies and explore multiple solution pathways (Star & Rittle-Johnson, 2008). This 
flexibility is particularly necessary for open-ended problems, where solution strategies are not 
immediately obvious (Bahar & Ozturk, 2018). However, traditional mathematics instruction tends to 
emphasize rigid procedural execution, which can limit problem-solving adaptability (Shaw, 2022). 

Additionally, conceptual and procedural knowledge integration plays a critical role in solving 
mathematical problems. Conceptual understanding (knowing why a mathematical principle works) 
enhances procedural efficiency, and vice versa (Rittle-Johnson, 2004). Successful problem solvers 
actively retrieve prior knowledge, decompose problems into manageable steps, and monitor cognitive 
load (Oviatt et al., 2006), which varies based on the complexity of the problem and the solver’s 
expertise. 

Mathematical disabilities often stem from deficits in spatial working memory and visuospatial 
processing (Passolunghi & Mammarella, 2012), reinforcing the importance of these cognitive 
resources in problem-solving. For instance, impairments in spatial working memory negatively impact 
arithmetic reasoning, counting strategies, and geometric problem-solving (Hubber, 2015). 

 

Cognitive Mechanisms in Mathematical Writing 

Writing a mathematical question, in contrast, engages metacognition, language processing, and 
conceptual reasoning. Unlike problem-solving, which primarily activates procedural memory and 
numerical cognition, question-writing demands reflective thinking and linguistic structuring (Kosko et 
al., 2014). 

Studies indicate that writing about mathematics strengthens higher-order cognitive functions, such 
as concept organization, abstraction, and anticipation of problem-solving pathways (Pugalee, 2001). 
When individuals create mathematical questions, they engage in a process of deconstructing 
mathematical concepts, which enhances self-regulation and deep learning (Goldsby & Cozza, 2002). 
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Moreover, writing mathematics-related content promotes mathematical literacy, requiring 
individuals to articulate ideas clearly and align them with mathematical principles (Waywood, 1992). 
This process fosters an understanding of abstract mathematical concepts by bridging numerical 
operations with linguistic expressions (Dreyfus et al., 2020). 

Additionally, language factors significantly impact mathematical writing. As Aiken (1972) found, 
verbal ability and reading comprehension influence a student’s capacity to formulate mathematically 
coherent questions. Similarly, writing mathematical problems necessitates an awareness of 
instructional and conversational functions, suggesting that the ability to craft meaningful questions is 
linked to teaching effectiveness and knowledge transfer (Mackiewicz & Thompson, 2014). 

 

Discussion - Comparing the Two Cognitive Processes 
While both mathematical problem-solving and question-writing engage cognitive resources, they 

differ in their primary mechanisms. 

 

Implications for Mathematics Education 
These cognitive differences suggest that mathematics education should integrate both problem-

solving and question-writing activities to optimize learning outcomes. While problem-solving develops 
procedural fluency and spatial reasoning, writing enhances metacognition and conceptual 
understanding (Kosko et al., 2014). 

 

Teachers can leverage these cognitive mechanisms by: 
1. Encouraging students to write their own mathematical questions, which promotes deeper 

understanding and conceptual mastery. 

2. Incorporating problem-solving activities with reflective writing, reinforcing metacognitive 
skills. 

3. Providing structured opportunities for cognitive flexibility development, allowing students 
to explore multiple problem-solving approaches (Huiyan et al., 2023). 

4. Addressing working memory constraints in instruction, particularly for students with 
learning disabilities (Passolunghi & Mammarella, 2012). 
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